54F/74F432

Multi-Mode Buffered Latch

With 3-State Outputs

Description

The 'F432 is an 8-bit latch with 3-state output buffers and control and device selection logic. Also included is a status flip-flop for providing device-busy or request-interrupt commands. Separate Mode and Select inputs allow data to be stored with the outputs enabled or disabled. The device can also cperate in a fully transparent mode.

The 'F432 is the functional equivalent of the Intel 8212, but with inverting outputs.

- 3-State Inverting Outputs
- Status Flip-Flop for Interrupt Commands
- Asynchronous or Latched Receiver Modes
- Data to Output Propagation Delay Typically 8.5 ns
- Supply Current 43 mA Typ
- 24-Pin Slim Package

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP and SOIC

[9] $2 0 \longdiv { 2 1 } \sqrt [2 2] { 2 3 } \sqrt [2 3] { 2 4 }$

Pin Assignment
for LCC and PCC

Input Loading/Fan-Out: See Section 3 for U.L. definitions

Pin Names	Description	$54 F / 74 F(U . L)$. HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$0.5 / 0.375$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Latch Outputs	$75 / 15(12.5)$
$\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2}$	Select Inputs	$0.5 / 0.375$
M	Mode Control Input	$0.5 / 0.375$
STB	Strobe	$0.5 / 0.375$
$\overline{\mathrm{NT}}$	Interrupt	$25 / 12.5$
$\overline{\mathrm{CLR}}$	Clear	$0.5 / 0.375$

Functional Description

This high-performance eight-bit parallel expandable buffer register incorporates package and mode selection inputs and an edge-triggered status flipflop designed specifically for implementing busorganized input/output ports. The 3-state data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data. An integral status flipflop provides busy or request interrupt commands.

The eight data latches are fully transparent when the internal gate enable, G, input is HIGH and the outputs are enabled. Latch transparency is selected by the mode control (M), select ($\overline{\mathrm{S}}_{1}$ and S_{2}), and the strobe (STB) inputs and during transparency each data output (\bar{O}_{n}) follows its respective data input $\left(D_{n}\right)$. This mode of operation can be terminated by clearing, de-selecting, or
holding the data latches. See Data Latches Function Table.

An input mode or an output mode is selectable from this single input line. In the input mode, $M=L$, the eight data latch inputs are enabled when the strobe is HIGH regardless of device selection. If selected during an input mode, the outputs will follow the data inputs. When the strobe input is taken LOW the latches will store the most recently setup data.

In the output mode, $M=H$, the output buffers are enabled regardless of any other control input. During the output mode the content of the register is under control of the select ($\overline{\mathrm{S}}_{1}$ and S_{2}) inputs. See Data Latches Function Table.

Data Latches Function Table

Function	$\overline{\text { CLR }}$	M	$\overline{\mathbf{S}}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S T B}$	Data In	Data Out
Clear	L	H	H	X	X	X	H
	L	L	L	H	L	X	H
De-select	X	L	X	L	X	X	Z
	X	L	H	X	X	X	Z
Hold	H	H	H	L	X	X	\bar{Q}_{0}
	H	L	L	H	L	X	\bar{Q}_{0}
Data Bus	H	H	L	H	X	L	H
	H	H	L	H	X	H	L
Data Bus	H	L	L	H	H	L	H
	H	L	L	H	H	H	L

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance

Status Flip-Flop Function Table

$\overline{\text { CLR }}$	$\overline{\mathbf{S}}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	STB	$\overline{\text { INT }}$
L	H	X	X	H
L	X	L	X	H
H	X	X	\dagger	L
H	L	H	X	L

[^0]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Characteristics over Operating Temperature Range (unless otherwise specified)

Symbol	Parameter	54F/74F			Units

AC Characteristics: See Section 3 for waveforms and load configurations

Symbol	Parameter	54F/74F	54F	74F	Units	Fig. No.
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}= \\ & \mathrm{Mil} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} T_{A}, V_{C C}= \\ C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$		
		Min Typ Max	Min Max	Min Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay D_{n} to O_{n}	$\begin{array}{rrr} 3.5 & 8.5 & 10.5 \\ 2.5 & 5.5 & 7.0 \end{array}$		$\begin{array}{ll} 3.0 & 12.0 \\ 3.0 & 12.0 \end{array}$	ns	$\begin{aligned} & 3-1 \\ & 3-3 \end{aligned}$
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2}$ or STB to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{array}{lll} 8.5 & 16.0 & 21.0 \\ 6.5 & 12.5 & 16.0 \end{array}$		$\begin{array}{cc} 7.5 & 23.0 \\ 5.5 & 18.0 \end{array}$	ns	$\begin{aligned} & 3-1 \\ & 3-7 \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{C L R}$ to \bar{O}_{n}	7.015 .018 .5		$6.0 \quad 20.5$	ns	$\begin{aligned} & 3-1 \\ & 3-9 \end{aligned}$
$\mathrm{t}_{\text {PHL }}$	Propagation Delay STB to INT	6.011 .514 .5		5.016 .0	ns	$\begin{gathered} 3-1 \\ 3-10 \end{gathered}$
$t_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{S}}_{1}$ or S_{2} to $\overline{\mathrm{INT}}$	$\begin{array}{llll}4.0 & 7.5 & 9.5\end{array}$		3.510 .5	ns	$\begin{gathered} 3-1 \\ 3-10 \end{gathered}$
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation Delay M to \bar{O}_{n}	$\begin{array}{lll} 9.0 & 15.0 & 19.0 \\ 6.5 & 11.0 & 14.0 \end{array}$		$\begin{array}{ll} 9.0 & 20.0 \\ 6.5 & 15.0 \end{array}$	ns	$\begin{aligned} & 3-1 \\ & 3-3 \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Enable Time \bar{S}_{1}, S_{2} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{array}{lll} 4.5 & 13.0 & 18.0 \\ 5.0 & 11.0 & 15.0 \end{array}$		$\begin{array}{ll} 4.0 & 20.0 \\ 4.0 & 17.0 \end{array}$	ns	$3-1$ $3-12$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time $\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2} \text { to } \overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{array}{rrr} 4.0 & 8.0 & 11.0 \\ 5.0 & 11.0 & 15.5 \end{array}$		$\begin{array}{ll} 3.5 & 12.5 \\ 4.0 & 17.5 \end{array}$		

AC Operating Requirements: See Section 3 for waveforms

[^0]: $\mathrm{H}=$ HIGH Voltage Level
 $\mathrm{L}=$ LOW Voltage Level
 $\mathrm{X}=$ Immaterial
 I = LOW-to-HIGH Transition

